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Abstract:  

PM2.5, generated via both direct emissions and secondary formations, can have varying 

environmental impacts due to different physical and chemical properties of its components. 

However, traditional methods to quantify different PM2.5 components are often based on 

online observations or lab analyses, which are generally high economic cost and labor-5 

intensive. In this study, we develop a new method, named multi-tracer estimation algorithm 

(MTEA), to identify the primary and secondary components from routine observation of 

PM2.5. By comparing with the long-term and short-term measurements of aerosol chemical 

components in China, as well as aerosol composition network in the United States, MTEA is 

proved to be able to successfully capture the magnitude and variation of the primary PM2.5 10 

(PPM) and secondary PM2.5 (SPM). Applying MTEA to China national air quality network, 

we find that 1) SPM accounts for 63.5% of PM2.5 in southern cities of China averaged for 

2014-2018, while in the North the proportion drops to 57.1%, and at the same time the 

secondary proportion in regional background regions is ~19% higher than that in populous 

regions; 2) the summertime secondary PM2.5 proportion presents a slight but consistent 15 

increasing trend (from 58.5% to 59.2%) in most populous cities, mainly because of the recent 

increase in O3 pollution in China; 3) the secondary PM2.5 proportion in Beijing significantly 

increases by 34% during the COVID-19 lockdown, which might be the main reason of the 

observed unexpected PM pollution in this special period; and at least, 4) SPM and O3 show 

similar positive correlations in the BTH and YRD regions, but the correlations between total 20 

PM2.5 and O3 in these two regions are quite different as PPM levels determines. In general, 

MTEA is a promising tool for efficiently estimating PPM and SPM, and has huge potential 

for the future PM mitigation. 
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1 Introduction 

Fine particulate matter (PM2.5, aerodynamic diameter less than 2.5 μm) has been the 

dominant air pollutant in China in the past several years (An et al., 2019; Song et al., 2017; 

Yang et al., 2016). One source of PM2.5 is the direct emission from combustion of 

fossil/biomass fuel, dust blowing and sea spray, forming primary organic aerosol (POA), 5 

elemental carbon (EC), sea salt and mineral dust. The other source is the secondary formation 

from gaseous precursors emitted by anthropogenic and biogenic activities (Zhu et al., 2018; 

Wang et al., 2019), generating secondary organic aerosol (SOA) and secondary inorganic 

aerosol (SIA, sulfate, nitrate and ammonium).  

The primary and secondary components of PM2.5 have different environmental impacts 10 

on air quality, human health and climate change. For example, as a typical primary PM2.5 

(PPM), EC can severely reduce atmospheric visibility and greatly influence weather and 

climate due to its strong absorption of solar radiation (Bond et al., 2013; IPCC, 2013; Mao et 

al., 2017). Sulfate, a critical hygroscopic component of secondary PM2.5 (SPM), can be fast 

formed under high relative humidity condition and further leads to grievous air pollutions 15 

(Cheng et al., 2016; Guo et al., 2014; Quan et al., 2015). Furthermore, the sulfate and other 

hygroscopic PM2.5 have considerable influences on climate change mostly by changing cloud 

properties (Leng et al., 2013; von Schneidemesser et al., 2015). In addition, different PM2.5 

components also have various deleterious impacts on human health for their toxicities (Hu et 

al., 2017; Khan et al., 2016; Maji et al., 2018). 20 

Many studies have been conducted on PM2.5 components, however, most of them are 

individual and/or short-term (Guo et al., 2014; Huang et al., 2014b; Ge et al., 2017; Huang et 

al., 2017; Tao et al., 2017; Ye et al., 2017; Dai et al., 2018; Liu et al., 2018b; Wu et al., 2018; 

Yu et al., 2019; Zhang et al., 2019). Some studies employed the online aerosol mass 

spectrometer (AMS) to analyze different PM2.5 compositions in Beijing and found that 25 

secondary aerosol was the dominant fraction of PM2.5 mass concentration during polluted 

periods (Guo et al., 2014; Quan et al., 2015). Based on offline filter measurements and further 

laboratory analysis, Liu et al. (2018b) investigated the characteristics of PM2.5 components in 

12 sites in China (6 urban sites and 6 background sites) for the period of 2012-2013. The 

result pointed out that the mass concentrations of PPM and SPM and their relative 30 

proportions were quite changeable in different regions and seasons. Nevertheless, both the 

online and offline measurements require a high level of manpower and economic cost, and 

for this reason, these methods are expensive and rarely applied in large-scale regions or long-
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term periods.  

In this study, we develop a new method, Multi-Tracer Estimation Algorithm (MTEA), 

with the aim of distinguishing the primary and secondary compositions of PM2.5 from routine 

observation of PM2.5 concentration. This algorithm and its application are tested in China and 

the United States. In section 3, we evaluate the MTEA results comparing with three PM2.5 5 

composition data sets, (1) short-term measurements in 16 cities in China from 2012 to 2016 

reported by previous studies, (2) continuous long-term measurements in Beijing and 

Shanghai from 2014 to 2018, and (3) IMPROVE network in the United States during 2014 

and 2018. Subsequently, we investigate the spatio-temporal characteristics of PPM and SPM 

concentrations in China in Section 4.1 and 4.2, explain the unexpected haze event in several 10 

cities of China during the COVID-19 lockdown in Section 4.3 and discuss the complicated 

correlation between PM and O3 in Section 4.4. This study is different from previous works as 

follows: (1) we develop an efficient approach to explore PPM and SPM with low economy- 

and technique-cost, (2) we apply this approach to observation data from the MEE network, 

offering an unprecedented opportunity to quantify the PM2.5 components on a large space and 15 

time scale.  

 

2 Methodology 

2.1 The Multi-Tracer Estimation Algorithm (MTEA)  

In order to distinguish PPM and SPM efficiently from the observed PM2.5, we develop a 20 

new approach, named Multi-Tracer Estimation Algorithm (MTEA). The multi-tracer (X) is 

defined to represent multiple primary contributions to PM2.5, mainly resulting from 

incomplete combustion of carbonaceous material and flying dust. We select the typical 

combustion product CO as one tracer to represent the combustion process, and the particles in 

coarse mode (PMC, i.e. PM10 minus PM2.5) as the other tracer to track flying dust. Then, we 25 

combine the CO and PMC to generate the multi-tracer X (Eq. 1), which can represent hybrid 

primary contributions to PM2.5. 

X = 𝑎 ∗ CO + 𝑏 ∗ PMC  (𝑎 + 𝑏 = 100%)    (1) 

As shown in Eq. 1, we use a and b to quantify the relative contributions of combustion 

and dust process to PPM. The values of the coefficients depend on the ratio of emission 30 

intensities of POA+EC (combustion products) and fine mode dust, as shown in Eq. 2.  
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𝑎

𝑏
=  

EOA+ EEC

Efinedust
=  

1.2EOC+ EEC

EPM2.5−(1.2EOC+ EEC+ESO4+ ENO3)
   (2) 

where, EOA, EEC, Efinedust, EOC, EPM2.5, ESO4 and ENO3 represent the emissions of OA, EC, fine 

mode dust, OC, PM2.5, sulfate and nitrate, respectively. We obtain anthropogenic PM2.5, EC 

and OC emissions in China from Multi-resolution Emission Inventory for China (MEIC, 

http://meicmodel.org/, last access: 1 August 2021) developed by Tsinghua University (Li et 5 

al., 2017c). For United States, we retrieve the emission data from the global inventory HTAP 

(https://edgar.jrc.ec.europa.eu/htap_v2/index.php?SECURE=123, last access: 1 August 2021). 

We further estimate POA emission using POC emission multiply by an empirical factor of 1.2 

recommended in literature (Seinfeld and Pandis, 2006), and quantify sulfate and nitrate 

emissions using PM2.5 emission multiply by an investigative coefficient of 0.1 (Zhang 2019). 10 

However, the 0.1 might be relatively higher compared to empirical coefficients used in 

previous simulation studies (0.01-0.05). We evaluated the potential effect of the coefficient, 

by conducting a set of comparative simulation with the coefficient of 0.03, and found that the 

final estimated SPM was not sensitive to this coefficient (Table S1). The fine mode dust 

emission is inferred by the emission of PM2.5 deducting the emissions of EC, POA, sulfate 15 

and nitrate. Based on Eq. 2, we establish a dynamic “a-b value” database, which can reflect 

the specific changes of PM2.5 sources in terms of different years, seasons, hours and different 

regions.  

With the help of the multi-tracer X, we can descript secondary PM2.5 as follows: 

−2.5SPM = PM PPM                (3) 20 

− 2.5

PPM
= PM X

X
    (4) 

Here, PM2.5 is the observed PM2.5 concentration, and the multi-tracer X can be 

calculated from the observed CO, PM2.5 and PM10 concentrations. The original 

concentrations of CO, PM2.5 and PM10 are normalized for avoiding the influences of their 

initial levels. To calculate SPM, the key step is to find out the target ratio of PPM/X. In the 25 

MTEA method, we give the PPM/X ratio a reasonable range (a range from 0 to 400 is used in 

this work) and then scan the ratio with an interval of 1. For more precise results, a smaller 

scanning step can be applied while it may take larger calculation cost. As a result, each 

varying ratio may obtain a series of SPM, along with a coefficient of determination (R2) 

between SPM and X (Fig. S1). If we assume that PPM and SPM came from different sources 30 

or processes, then the appropriate PPM/X ratio should be the one that corresponds to weak 
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correlation between SPM and X-tracer. To better understand principle of the MTEA approach, 

we show the flow chart in Fig. 1. We also provide the MTEA software package and input data 

sets at http://nuistairquality.com/m_tea (last access: 1 August 2021). 

The MTEA approach makes some improvement based on the similar principle and 

assumptions with the modified EC-tracer method developed by Hu et al. (2012). They 5 

estimated primary and secondary organic carbon (POC and SOC) concentrations by adopting 

a proper POC/EC ratio when SOC correlated with EC worst. However, this assumption may 

be too hard to exist in the real atmosphere. Therefore in the MTEA approach, we take a range 

of proper ratios of PPM/X when SPM correlates with X-tracer non-significantly (with p-value 

greater than 0.05). As a result, the calculated SPM concentration for each case is a range 10 

(Table S2). We employed the concentration ranges to represent the severity of secondary 

pollution and discussed its uncertainties in the following discussions. While for quantitative 

calculation, the mean values of the concentration ranges stand for the final estimation. 

 

2.2 PM2.5 measurements 15 

2.2.1 PM2.5 concentration measurements from the MEE network in China 

Focus on the PM2.5 pollution in China, MEE set up a comprehensive air quality 

monitoring network for consistently accessing hourly concentrations of PM2.5 as well as SO2, 

NO2, CO, O3 and PM10 since 2013. This network is the most advanced monitoring network 

currently in China. In this study, we obtained surface observations of hourly PM2.5, PM10, CO 20 

and O3 at 334 national monitoring sites in 50 cities from 2014 to 2018 from the MEE public 

website (http://106.37.208.233:20035/, last access: 1 August 2021). 31 among the 50 cities 

are provincial capital cities, employed to represent populous cities, while the rest 19 

relatively small cities are categorized as regional background cities (Table S3). Geographical 

distribution of those populous and regional background cities is shown in Fig. 2a.  25 

Recently, the Chinese government carried out a series of control policies, such as 

elimination of backward industry, desulfurization and denitration of flue gas, as well as 

restriction on motor vehicles (Tang et al., 2019; Wu et al., 2017). Consequently, the 

concentrations of the major gaseous and particle pollutants have been decreased year by year 

(Zhai et al., 2019; Shen et al., 2020) . Take PM2.5 as an example, previous studies revealed 30 

that annual mean PM2.5 decreased by 30-50% across China during the period of 2013-2018. 
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2.2.2 PM2.5 composition measurements in China 

Numerous studies focused on the aerosol chemical composition in China employed 

offline filter-based observations coupled with laboratory analysis to obtain detailed 

information of PM2.5 compositions. For directly comparing the estimated PPM/SPM with the 

measured ones in China, we made an evaluation via two long-term time series in-situ 5 

measurements in Beijing (Peking University, PKU) and Shanghai (Shanghai Academy of 

Environment Sciences, SAES) during 2014-2018 (Huang et al., 2019; Tan et al., 2018). The 

chemical compositions of measurements include ions (NH4
+, Na+, K+ Mg2+, Ca2+, SO4

2-, NO3
-, 

Cl-, by ion chromatography), elements (Al, Si, Ti, Ca, Ti, Mn, etc., through X-ray 

fluorescence spectrometry), and carbonaceous components (EC and organic carbon, using the 10 

thermal-optical transmittance carbon analyzer). After accessing the chemical compositions, 

we categorized them into PPM and SPM for further evaluation. 

In addition, we conducted an investigation about observation-based PM2.5 component 

analyses in 16 cities of China during 2012-2016 from 32 published studies. This survey 

offered an opportunity for comparing the estimation by MTEA with the past measurements in 15 

the terms of the secondary fraction of PM2.5. 

 

2.2.3 PM2.5 composition measurements from IMPROVE network in the United States 

The Interagency Monitoring of Protected Visual Environments (IMPROVE) aerosol 

network has continuous records of PM10, PM2.5 and its chemical speciation in the United 20 

States since 1987. The specific aerosol chemical compositions include ammonium sulfate, 

ammonium nitrate, organic/elemental carbon and soil/mineral dust. More detailed 

descriptions about IMPORVE are available at http://vista.cira.colostate.edu/Improve/ (last 

access: 1 August 2021). Here we extracted the measurements at 104 valid sites in the United 

States from 2014 to 2018 for the evaluation of MTEA. The spatial distribution of IMPROVE 25 

sites used in this work is shown in Fig. 2b. It is noted that IMPROVE program only provides 

single aerosol component profile every three days. We lowered the time resolution into the 

monthly average for further evaluation. However, CO is excluded in IMPROVE program. We 

therefore adopted the Kriging interpolation of CO data based on the hourly archives from the 

United States EPA (https://www.epa.gov/outdoor-air-quality-data, last access: 1 August 2021) 30 

as an alternative for model input when running the MTEA. 
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3 Model evaluation 

3.1 Evaluation in China 

3.1.1 Comparison with continuous long-term measurements in Beijing and Shanghai 

We compared the MTEA results with the two sets of long-term in-situ measurements in 

Beijing and Shanghai, China, and show the evaluations in Fig. 3. Reduced major axis (RMA) 5 

regression was applied for fitting the data. In data preprocessing, we removed the in-situ daily 

measurements whose value was over 30 μg·m-3 higher than the city average (from MEE).  

The comparisons between the estimated and observed PPM in the two cities are given in 

Fig. 3a and 3c. The correlation coefficient r for predicted PPM versus observed PPM is 0.85 

in Beijing and 0.87 in Shanghai. The slope of regression is 1.29 in Beijing and 0.73 in 10 

Shanghai, which indicating an overestimation (NMB=32%) or underestimation (NMB=-9%) 

in these two cities. In terms of SPM, the regression line in Shanghai is quite close to the 1:1 

ratio line (s=1.13, d=-2.3), and its statistical correlation is up to 0.89. The estimated SPM in 

Beijing also shows a high correlation with the observed ones, with its r value exceeds 0.80, 

though the fitting formula indicates an underestimation of 27%. The discrepancies can be 15 

explained by the fact that the observations of primary emission tracers and PM2.5 are obtained 

from different sites. Specifically, the CO and PMC observations are obtained from 12 

monitoring MEE sites in Beijing, while the PM2.5 component measurements are from single 

spot at PKU which is away from crowded streets (Tan et al., 2018). The MTEA predictions 

based on the data from MEE sites located at high-emitting densities district may propose a 20 

quite overestimation on PPM concentrations. 

Overall, MTEA model performed satisfactorily in case of comparing with the long-term 

in-situ measurements in Beijing and Shanghai. Nearly all the dots are located at the range 

between 2:1 ratio and 1:2 ratio. It is believed that our model is able to capture the magnitudes 

and variations of the PPM and SPM. The comparison about the estimated and the observed 25 

inter-annual variations in PPM and SPM would be further discussed in the following texts 

(sect. 4.2.2). 

 

3.1.2 Comparison with various short-term measurements 

To evaluate the reliability of the MTEA approach, we also conducted a literature review 30 

for collecting a variety of observation-based PM2.5 component analyses in 16 cities of China 
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during 2012-2016 (Chen et al., 2016; Du et al., 2017; Cui et al., 2015; Dai et al., 2018; Gao et 

al., 2018; Huang et al., 2014a; Huang et al., 2014b; Huang et al., 2017; Jiang et al., 2017; Li 

et al., 2016; Li et al., 2017a; Lin et al., 2016; Liu et al., 2017; Liu et al., 2014; Liu et al., 

2018a; Liu et al., 2018b; Ming et al., 2017; Niu et al., 2016; Tan et al., 2016; Tang et al., 2017; 

Tao et al., 2017; Tao et al., 2015; Tian et al., 2015; Wang et al., 2018; Wang et al., 2016a; 5 

Wang et al., 2016b; Wu et al., 2016; Xu et al., 2019; Yu et al., 2019; Zhang et al., 2015; 

Zhang et al., 2018; Zhao et al., 2015). Most field measurements focused on regions in eastern 

China and on episodes during the winter. We listed the concentrations of observed PM2.5, 

SO4
2-, NO3

-, NH4
+, and SOA from these studies in Table S4. It should note that there may be 

inconsistencies in the observation due to different sampling location, observational time and 10 

analytical instruments in each study. 

The estimated PPM and SPM from MTEA show a reasonable agreement with the 

observation-based PM2.5 component analyses in China. The MTEA estimated secondary 

proportions of PM2.5 (i.e. secondary PM2.5 / total PM2.5) vary in a range of 41% to 67%, and 

are higher in eastern cities of China, consistent with the observational results. However, we 15 

find that there are still a few discrepancies between the estimated and observation-based 

results, and the main reasons might be (1) sea salts aerosol contributes a lot to the PM2.5 in 

some coastal cities, but it is unable to be represented by the multi-tracer X, such as the case of 

Haikou, (2) natural dust plays an important role in PM2.5 formation in some western cities, 

however it cannot be accounted for by anthropogenic emission inventory, such as the case of 20 

Lanzhou, and (3) the observation-based results are derived from too few samplers for some 

cities, such as Lhasa. 

 

3.2 Evaluation in the United States 

Based on the chemical component measurements of IMPROVE network, we evaluated 25 

the performance of the MTEA model in the United States. Figure 4 presents the scatter plots 

of the evaluation results, with x-axis indicates the observed concentrations and the y-axis 

indicates the estimated concentrations. The validation was done in the form of temporal, 

spatial, as well as spatio-temporal. Each dot represents a monthly mean of either observed or 

estimated PM concentration.  30 

Almost all of the dots are located at the region between the 2:1 and 1:2 dotted line, 

indicating that our model is capable of predicting the magnitudes of PPM/SPM in the United 
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States. Based on correlation analysis, we find that the correlation coefficient r for PPM ranges 

from 0.69 (spatio-temporal validation) to 0.75 (temporal validation), while for SPM, the r is 

even up to 0.98 (temporal validation). The results reveal that the MTEA approach 

successfully captured the spatial and temporal variations of PPM and SPM in the United 

States.  5 

The majority of dots distribute around the 1:1 dotted line. Based on the fitting results, 

the slopes for regression lines vary from 1.12 (spatial validation) to 1.15 (temporal validation) 

for PPM and from 0.92 (temporal validation) to 0.93 (spatio-temporal validation) for SPM.  

In general, PPM and SPM show a slight overestimation and underestimation respectively. 

The discrepancies may result from the influences of emission inventory. It is reported that the 10 

emissions of PMC and CO in the United States continuously declined over the past decade 

(https://www.statista.com/statistics/501298/volume-of-particulate-matter-2-5-emissions-us/, 

last access: 2 October 2021). Thus the coefficients a and b derived from HTAP global 

emission inventory in 2010 overestimate the contribution of primary emissions during the 

studying period. However, the impacts of emission are inevitable, and we will discuss the 15 

uncertainty of emission inventory in Sect. 4.5. In addition, the intercepts of these regression 

lines for both PPM and SPM are less than ±0.1 μg·m-3. The verification results strongly show 

that our model can reasonably reproduce the monthly averaged concentration of PPM and 

SPM in the United States. 

 20 

4 Results and discussion 

We used the MTEA approach and the MEE observation data to estimate PPM and SPM 

concentrations in China for the period of 2014-2018. The observations during severe haze 

events (top 10% CO and PMC polluted days) were excluded to avoid the influence of 

extreme high primary emission cases.  25 

 

4.1 Spatial distribution 

Figure 5 shows spatial patterns of the MTEA estimated PPM and SPM concentrations 

over China averaged for the period of 2014-2018. 16 populous cities and 9 regional 

background cities in the north, and 15 populous cities and 10 regional background cities in 30 

the south (North-South is separated by the Qinling-Huaihe line) are involved in the following 

discussions.  
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In populous cities, the concentrations of both PPM and SPM in the north (5-year 

averaged 21.5 μg·m-3 for PPM and 26.6 μg·m-3 for SPM) are 15-43% higher than those in the 

south (15.0 μg·m-3 for PPM and 23.2 μg·m-3 for SPM). The North-South difference is mainly 

caused by the higher energy consumption and consequent stronger pollutant emissions 

occurring in northern populous regions. Nevertheless, in background regions, the difference 5 

is relatively smaller for SPM. The SPM in the South (12.5 μg·m-3) is only 1% higher than that 

in the North (12.4 μg·m-3). 

In terms of the secondary proportion of PM2.5, the MTEA approach speculates it to be 

higher in southern regions (63.5%) than that in northern regions (57.1%). The result confirms 

the fact that atmospheric condition in the South is more favorable for secondary pollutant 10 

formation than it is in the North. In addition, the MTEA approach reasonably captures the 

difference of the secondary proportion of PM2.5 between populous and regional background 

cities. As shown in Fig. 5e and 5f, the secondary proportions of PM2.5 in regional background 

cities are 19% higher than those in populous cities, consistent with recent observational 

studies (Liu et al., 2018b). Secondary aerosols can affect a larger area than primary aerosols, 15 

mostly due to the diffusion of its gaseous precursors. Thus, for regional background regions, 

the role of secondary PM2.5 tends to be more important, mainly caused by the transmitted 

secondary pollutants from surrounding populous regions. 

 

4.2 Temporal variation  20 

4.2.1 Seasonal variation 

We compare seasonal mean concentrations of the MTEA estimated PPM and SPM in 31 

populous cities and 19 regional background cities in Table 1. Both the concentrations of PPM 

and SPM are the highest in winter, with the seasonal mean concentration of 16.6 μg·m-3 for 

PPM and 24.9 μg·m-3 for SPM across China. This phenomenon can be mainly explained by 25 

adverse diffusion conditions, such as low boundary layer height and strong temperature 

inversion (Zhao et al., 2013), as well as fossil-fuel and biofuel usage for winter home heating 

(Zhang et al., 2009; Zhang and Cao, 2015). Summer is the least polluted season in the year, 

with the seasonal mean PPM is 10.2 μg·m-3 and SPM is 15.8 μg·m-3 nationwide, largely 

benefiting from the higher boundary layer (Guo et al., 2019) and abundant precipitations.  30 

In terms of the secondary proportion of PM2.5, we also compared the secondary 

contributions in different seasons and in the 50 different Chinese cities (Table 1). The MTEA 
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approach estimates that the secondary proportion tends to be the lowest in fall, with seasonal 

mean value to be 56.1% nationwide, while for the other three seasons, the seasonal 

proportions stay around 61%. At the same time, the seasonality of the secondary proportion 

varies among different regions. In the north of China, the secondary proportions are higher in 

spring and summer, which is attributed to the stronger atmospheric oxidizing capacity (AOC) 5 

in the warmer seasons. But in the south of China, the highest secondary proportions occur in 

winter, which is mainly explained by the tremendous pollutants (secondary particles and its 

gaseous precursors) transported from northern China in presence of the monsoon. 

 

4.2.2 Inter-annual variation 10 

Figure 6 illustrates the inter-annual variations of the estimated PPM and SPM based on 

MTEA in the 31 populous cities and 19 regional background cities of China. We analyzed the 

MEE observational data during 2014-2018, but excluded the data in 2014 in the regional 

background regions due to data deficiencies in several cities. 

The observed PM2.5 concentrations in the populous cities are continuously and 15 

significantly reduced since 2014, largely benefiting from a series of emission control 

measures led by the governments, such as “Action Plan on Prevention and Control of Air 

Pollution” (Chinese State Council, 2013). Using the MTEA approach, we find that both PPM 

and SPM are decreased simultaneously, at an annual decreasing rate of 1.9 μg·m-3·yr-1 and 

2.7 μg·m-3·yr-1, respectively. Consequently, the secondary proportion of PM2.5 remains 20 

relatively constant (56.4-58.5%). But it presents a consistent increase trend (from 58.5% to 

59.2%) in summer during the studying period, which can be attributed to the continuing 

worsen O3 pollution. However, for regional background cities, the MTEA approach reports 

different features of the PM2.5 mitigation. The estimated SPM is considerably reduced by 1.1 

μg·m-3 yr-1 in regional background cities, while the PPM keeps nearly unchanged (decreasing 25 

rate is 0.2 μg·m-3·yr-1). This is because that SPM in regional background cities is largely 

contributed by pollutants transport from surrounding populous regions, where the air quality 

is getting better resulting from the aforementioned emission controls. However, the PPM, 

mostly deriving from local sources, is rarely affected by those emission controls which do 

mostly focus on densely-populated and industrialized cities but not on background regions.  30 

We discussed the inter-annual variations of PPM and SPM concentration on the basis of 

long-term in-situ observations in Beijing and Shanghai as well. As Fig. 7 shows, long-term 
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measurements demonstrate a decline of total PM2.5 by 4.0 μg·m-3 yr-1 in Beijing (1.6 μg·m-3 

yr-1 for PPM and 2.4 μg·m-3 yr-1for SPM) and by 3.9 μg·m-3 yr-1 in Shanghai (1.7 μg·m-3 yr-1 

for PM and 2.2 μg·m-3 yr-1for SPM). The observed secondary proportion of PM2.5 shows a 

slight decrease of -0.4% yr-1 in Beijing, but a small increase of 0.8% yr-1 in Shanghai. 

Applying the MTEA model to this case, we are delighted to find that our model not only 5 

successfully reproduces the consistent decreasing trends of PPM and SPM in Beijing and 

Shanghai, but also captures the different trends in secondary proportions of PM2.5 in the two 

cities (-0.6% yr-1 in Beijing and 0.3% yr-1 in Shanghai).  

 

4.3 Application during the COVID-19 lockdown 10 

To curb the spread of the novel Coronavirus Disease 2019 (COVID-19) pandemic, 

China conducted the entire city’s lockdown firstly in Wuhan, Hubei on January 23, 2020. 

Other provinces gradually implemented this restriction in the following three weeks (Le et al., 

2020). The lockdown greatly limited the traffic and outdoor activities, which directly reduced 

the emissions of primary pollutants (Huang et al., 2020). Through analyzing the MEE 15 

monitoring data before (1~23 Jan 2020) and during (24-Jan ~ 17-Feb 2020) the nationwide 

lockdown (Fig. 8 and Fig. S2), we show that the national mean NO2, PM2.5 and CO 

concentrations were decreased by 56%, 30% and 24%, respectively, while O3 posed an 

increase (34%) in general which would promote the AOC efficiently. However, the surface 

monitoring network still observed an unexpected PM2.5 pollution in cities over BTH region 20 

during the lockdown. Especially in Beijing, the mean PM2.5 concentration was increased by 

~100% compared to its averaged value (41 μg·m-3) before the nationwide lockdown.  

To explore this unexpected air pollution, we find that the enhanced secondary pollution 

could be the major factor, which even offset the reduction of primary emissions in the BTH 

region during the lockdown. With the help of MTEA, we tracked variations of the secondary 25 

proportions of PM2.5 in East China before and during the COVID-19 lockdown (Fig. 8 d-f). 

The secondary proportions in the BTH region show an evident increase, at the level of 7%-

34%, which highlights the importance of the secondary formation during the lockdown. Our 

result is consistent with recent observation and simulation studies (Chang et al., 2020; Huang 

et al., 2020; Le et al., 2020), which suggested that the reduced NO2 resulted in O3 30 

enhancement, further increasing the AOC and facilitating secondary aerosol formation. In 

addition, another cause of the air pollution is the unfavorable atmospheric diffusion 
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conditions. CO, a nonreactive pollutant, was increased by 22% in Beijing during the 

lockdown even under considerable reduction on its emission.  

For other regions of China, the MTEA approach suggests the secondary proportions of 

PM2.5 to be increased by 20% over the YRD region, but to be decreased by 32% over the 

Central China. Although O3 and AOC had enhanced in all these regions, the unprecedented 5 

reductions on precursors ultimately resulted in a net drop of secondary pollution.  

 

4.4 Correlation analysis with O3 

PM2.5 and O3 are closely correlated with each other. One reason is that PM2.5 and O3 

have similar precursors, i.e. NOx and VOCs. Besides, PM2.5 can impact O3 formation through 10 

adjusting radiation balance (Li et al., 2018) and affecting radical level via aerosol chemistry 

(Li et al., 2019). There is therefore a complicated interaction between PM2.5 and O3. Our 

study utilized MTEA approach for exploring the relationship between PM versus O3 from the 

perspective of exploring the statistical correlation.  

Figure S3 illustrates the hourly correlations between the estimated SPM versus the 15 

observed O3 averaged for 31 populous cities in China (cities which failed to pass the 

significant test were excluded) in summer. In general, SPM and O3 shows a nationwide 

positive relationship, especially during the afternoon (14:00~18:00, r up to 0.56). This 

phenomenon might be explained that productions of both O3 and SPM are simultaneously 

affected by AOC; thus the higher correlation tend to occur at time of stronger AOC. Moreover, 20 

the hourly correlations between SPM and O3 are higher than that between PPM and O3 

throughout the day, suggesting that secondary oxidation processes may be well captured by 

the MTEA method.  

A series of recent studies have focused on the correlation between PM2.5 and O3, and 

many of them agreed that the correlation varies greatly in different regions of China, 25 

specifically, the correlation is stronger positive in southern cities compared to that in northern 

cities. Because of this significant difference, a question raises: is the difference mostly caused 

by PPM, or SPM, or both of them? To address this question, we compare the correlations 

between daily PPM, SPM and total PM2.5 versus O3 in Beijing-Tianjin-Hebei (BTH) and 

Yangtze River Delta (YRD) region during the studying period, with the help of META 30 

approach. For avoiding the cleaning effects of wet deposition, the days when precipitation 

took place were removed. Precipitation data is based on the ERA5 reanalysis database from 
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the European Centre for Medium-Range Weather Forecasts (ECMWF, https://www.ecmwf.int/, 

last access, 1 August 2021). 

As shown in Fig. 9, the correlations between total PM2.5 and O3 are positive and are 

stronger in YRD (r=0.14) than in BTH (r=0.09). However, compared with total PM2.5, the 

correlations between SPM and O3 are much stronger (r=0.21-0.24) and shows minor regional 5 

differences, but for PPM, its correlation with O3 is not significant (p-value>0.05) in both 

regions. The higher correlation between SPM and O3 is mostly because that both of them are 

secondary oxidation products. Higher ambient O3 concentration indicates stronger AOC, and 

further lead to more SPM generation. However, for PPM, its effect on O3 is mainly to inhibit 

the production of O3 via adjusting radiation balance and affecting radical level. Hence, we 10 

suggest that the regional differences in the correlation between total PM2.5 and O3 are mainly 

caused by the different PPM levels in BTH and YRD regions.  

 

4.5 Uncertainties 

Based on the previous evaluation and discussions, we believe that the MTEA can 15 

successfully capture the magnitudes and spatio-temporal variations of PPM and SPM in 

China. However, these are still some uncertainties in the model estimation and its application 

in China.  

Firstly, the assumption of non-significant correlation between PPM versus SPM may be 

violated by the fact that SO2 and NOx emitted from combustions which will further generate 20 

secondary sulfate and nitrate particulates. Nevertheless, the combustion processes for 

generating SO2/NOx and PPM are still different. PPM, i.e. BC and POC, mainly comes from 

incomplete combustion of residential activities, such as burning biofuels and coal (Long et al., 

2013), but SO2 and NOx mainly come from the complete combustion process of industrial 

and transportation sources, such coal, gasoline and diesel (Lu et al., 2011; Li et al., 2017b; 25 

Tang et al., 2019). In addition, the MTEA approach uses the assumption of non-significant 

correlation rather than irrelevance. Such processing also reduces the uncertainty to a certain 

extent. 

Secondly, natural sources of PPM, such as fine dust from desert and sea salt, are not 

taken into account in the MTEA approach. As a result, PPM in the city near a desert or sea 30 

could be underestimated. For example, the PM2.5 components observational campaign 

conducted in 2015 showed that the contribution of sea salt aerosols to ambient PM2.5 mass 
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concentration in Haikou is 3.6-8.3% (Liu et al., 2017). 

Thirdly, current bottom-up emission inventories are generally outdated with a time lag 

of at least 1-2 years, mainly due to the lack of timely and accurate statistics. Consequently, 

the adjoint uncertainty in MTEA estimation is inevitable. To evaluate the uncertainty, a 

comparison test was conducted by changing the emission coefficient (the a and b in Eq. 1) 5 

with ±10%. The results are presented in Table S5 and point out that the estimated secondary 

proportions of PM2.5 varied less than ±3% in most Chinese cities causing by the changes of 

the emission coefficient.  

 

5 Conclusions 10 

In this study, we developed a new approach MTEA to distinguish the primary and 

secondary compositions of PM2.5 efficiently from routine observation of PM2.5 concentration. 

By comparing with long-term and short-term measurements of aerosol chemical components 

in China as well as aerosol composition network in the United States, we showed that MTEA 

was able to capture variations of PPM and SPM concentrations. 15 

 The method was then applied to the surface air pollutant concentrations from MEE 

observation network in China, and offered an effective way to understand the characteristics 

of PPM and SPM covering a wide area. In terms of spatial pattern, MTEA reveals that SPM 

accounts for 63.5% of total PM2.5 in southern cities averaged for 2014-2018, while in the 

North the proportion drops to 57.1%. It should be noted that the secondary proportion in 20 

regional background regions is ~19% higher than that in populous regions. In terms of 

seasonality, the estimated national averaged secondary proportion is the lowest in fall 

(56.1%), and for the other three seasons it stays among 61%.  

Moreover, we applied MTEA to explore the changes of secondary proportion in PM2.5 in 

China. In recent years, the PM2.5 pollution in China has been significantly alleviated 25 

benefiting from a series of emission control measures. The MTEA results suggest that both 

PPM and SPM are decreased simultaneously in populous regions, while for regional 

background regions, the reduction of secondary PM2.5 are much more notable than the PPM. 

The secondary proportion of PM2.5 in populous cities during 2014-2018 keeps constant (56.4-

58.5%) in general on an annual average scale, but it poses a slight but consistent increase in 30 

summer, mostly due to the elevated O3 and stronger photochemistry pollution in China. In 

addition, with the help of MTEA, we found that the secondary PM2.5 proportion in Beijing 
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significantly increased by 34% during the COVID-19 lockdown, which might be the main 

reason of the observed unexpected PM pollution in this special period. 

Finally, we applied MTEA to explore the synergistic correlation between PM2.5 and O3. 

Estimated results demonstrate that PPM is weakly correlated with O3, its effect on O3 is 

mainly to inhibit the production of O3 via adjusting radiation balance and affecting radical 5 

level. While SPM is positive correlated with O3 in presence of the effect of AOC. Higher 

ambient O3 concentration indicates stronger AOC, and further lead to more SPM generation. 

We suggested that the regional differences in the correlation between total PM2.5 and O3 are 

mainly caused by the different PPM levels in BTH and YRD regions. 

China has been plagued by PM2.5 pollution in recent years. Different PM2.5 compositions 10 

may have varying impacts on environment, climate and health, due to the different sources 

and generation pathways. Therefore, it’s of great importance to quantify PPM and SPM for 

the pollution recognition and prevention. Traditional methods to quantify different PM2.5 

components are often based on either lab analysis of offline filter samplings or online 

observation instruments such as AMS. However, these methods are often labor-intensive, 15 

strict technical and high economic cost. Our study develops an efficient approach to explore 

PPM and SPM with low economy- and technique-cost, and applying this approach to large-

scale observation networks, such as the MEE network, can offer an unprecedented 

opportunity to quantify the PM2.5 components on a large space and time scale.  

 20 
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Table 1. Seasonal mean concentrations of the primary and secondary PM2.5 in 31 populous 

cities and 19 regional background cities of China.  

City 

PPM (μg·m-3)  SPM (μg·m-3)  SPM/PM2.5 (%)  
M 
A 
M 

J 
J 
A 

S 
O 
N 

D 
J 
F 

 
M 
A 
M 

J 
J 
A 

S 
O 
N 

D 
J 
F 

 
M 
A 
M 

J 
J 
A 

S 
O 
N 

D 
J 
F 

Populous cities in the Northern China 

Beijing 31.0 28.4 30.6 34.1  25.0 23.7 20.1 16.2  44.7 45.4 39.6 32.2 

Tianjin 17.8 13.7 21.9 28.2  42.0 35.3 32.9 29.0  70.2 72.1 60.0 50.7 

Shijiazhuang 35.0 22.4 41.5 54.0  36.7 35.5 32.1 37.7  51.2 61.3 43.6 41.1 

Taiyuan 22.0 20.2 32.7 32.3  28.4 22.2 21.0 25.0  56.3 52.3 39.1 43.6 

Hohhot 13.1 11.4 18.2 20.1  19.2 13.1 16.0 20.7  59.5 53.6 46.8 50.7 

Shenyang 21.0 16.7 24.4 27.8  26.1 17.4 20.8 28.0  55.3 51.0 46.0 50.2 

Changchun 21.3 15.8 20.2 28.9  18.3 12.3 17.2 25.0  46.2 43.9 46.0 46.4 

Harbin 14.1 9.3 15.5 27.2  25.5 15.2 20.9 38.9  64.4 61.9 57.3 58.9 

Jinan 25.6 23.0 29.9 32.4  38.2 30.7 30.7 38.3  59.9 57.1 50.7 54.2 

Zhengzhou 24.8 20.2 28.6 34.1  45.2 28.8 33.9 44.1  64.6 58.7 54.3 56.4 

Lhasa 6.6 5.9 8.2 5.8  13.0 9.2 9.3 13.6  66.3 61.2 53.2 70.1 

Xian 24.1 15.3 31.3 37.1  31.5 20.1 24.5 41.3  56.7 56.7 44.0 52.7 

Lanzhou 14.1 10.1 17.8 21.3  29.3 24.1 24.8 33.2  67.6 70.4 58.2 60.9 

Xining 14.8 12.4 18.3 17.9  26.4 19.3 21.0 34.5  64.1 60.8 53.4 65.9 

Yinchuan 12.9 8.2 16.1 18.7  22.8 21.8 21.1 27.0  63.8 72.8 56.7 59.1 

Urumqi 15.2 9.5 16.5 27.9  30.9 19.1 32.0 63.6  67.1 66.9 66.0 69.5 

Average 19.6 15.2 23.2 28.0  28.7 21.7 23.6 32.3  59.4 58.9 50.4 53.5 

Regional background cities in the Northern China 

Weihai 8.1 7.1 8.6 10.7  23.8 18.5 14.9 13.7  74.6 72.2 63.4 56.0 

Jiayuguan 7.8 7.0 7.5 7.0  16.6 11.4 14.5 19.2  68.1 61.9 65.9 73.4 

Zhangjiakou 10.8 11.0 10.7 10.7  14.2 14.4 12.8 14.4  56.8 56.6 54.5 57.4 

Daxinganling 4.3 3.6 4.6 5.7  9.2 7.7 9.3 11.6  68.0 67.9 67.0 66.9 

Xilingol 2.3 2.3 2.8 3.1  10.2 9.3 7.7 9.1  81.8 80.1 73.1 74.7 

Yanbian 9.9 5.6 9.4 11.7  15.3 9.1 13.5 17.4  60.7 62.1 58.9 59.7 

Guyuan 12.3 9.0 11.9 13.1  19.0 13.1 14.7 20.1  60.7 59.2 55.4 60.6 

Yushu 4.3 2.1 4.2 3.9  10.0 9.6 7.1 9.9  69.8 82.3 62.7 71.5 

Altay 2.0 1.3 1.7 2.7  6.3 6.3 6.0 8.0  76.1 83.5 77.5 74.7 

Average 6.9 5.5 6.8 7.6  13.8 11.1 11.2 13.7  66.9 67.0 62.1 64.2 

Populous cities in the Southern China 

Shanghai 12.4 11.1 11.7 15.8  29.5 22.5 20.8 25.4  70.4 67.0 64.1 61.6 

Nanjing 19.1 16.0 19.9 24.3  29.2 18.7 19.9 28.5  60.4 53.9 50.1 54.0 

Hangzhou 21.1 17.8 21.5 23.6  24.9 14.5 18.9 28.5  54.1 45.0 46.8 54.7 

Hefei 16.4 14.6 17.9 23.2  39.8 26.7 30.1 39.8  70.9 64.6 62.7 63.2 

Fuzhou 9.0 7.5 7.5 7.6  18.0 12.9 13.7 19.7  66.6 63.3 64.7 72.2 

Nanchang 14.8 9.8 13.2 15.8  20.6 13.6 22.3 28.8  58.2 58.1 62.9 64.6 

Wuhan 18.5 15.6 18.9 25.3  36.4 19.9 30.0 45.3  66.3 56.1 61.3 64.2 

Changsha 17.6 13.2 17.5 21.9  31.5 21.1 31.2 40.0  64.1 61.5 64.1 64.6 

Guangzhou 11.6 9.5 12.1 12.7  22.6 16.3 23.4 26.6  66.0 63.3 65.9 67.7 

Nanning 11.7 9.7 14.9 13.3  22.0 12.9 19.9 28.7  65.3 57.1 57.1 68.3 

Haikou 5.8 4.7 8.1 6.0  11.5 6.9 8.7 15.8  66.3 59.4 51.8 72.6 

Chongqing 17.9 14.0 18.6 21.6  24.1 19.4 25.0 38.8  57.5 58.0 57.3 64.2 

Chengdu 29.6 20.0 27.1 31.7  23.6 15.0 18.2 39.1  44.3 42.8 40.1 55.2 

Guiyang 13.5 10.6 12.2 9.9  21.3 12.2 18.5 29.8  61.2 53.6 60.4 75.0 

Kunming 9.3 6.5 6.9 8.1  21.1 13.5 16.1 18.4  69.5 67.6 69.9 69.3 
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Average 15.2 12.0 15.2 17.4  25.1 16.4 21.1 30.2  62.2 57.7 58.1 63.5 

Regional background cities in the Southern China 

Huangshan 5.3 5.1 5.7 6.4  20.7 11.2 16.3 22.7  79.5 68.8 74.2 78.1 

Nanping 6.1 5.0 6.4 5.7  15.9 11.4 13.4 17.4  72.2 69.7 67.9 75.4 

Zhoushan 9.5 8.0 8.4 11.9  13.7 10.2 10.1 11.5  59.2 56.2 54.5 49.1 

Shanwei 7.9 4.8 8.2 5.7  16.6 10.3 17.4 22.7  67.8 68.2 68.1 79.9 

Beihai 7.5 4.2 10.6 8.7  16.4 8.2 16.4 25.8  68.7 65.9 60.6 74.7 

Qianxinan 3.3 1.7 2.2 2.9  12.5 12.1 12.2 13.8  79.2 87.9 84.8 82.9 

Sanya 4.6 4.2 5.5 3.7  9.7 5.6 6.8 11.7  67.8 56.8 55.4 75.8 

Aba 2.0 2.1 2.1 2.9  10.5 10.3 10.3 10.8  84.2 83.0 83.2 78.7 

Linzhi 2.3 1.5 2.0 2.1  7.5 6.2 5.3 7.6  76.6 80.5 73.0 78.5 

Diqing 1.9 1.5 1.7 1.6  10.5 9.4 9.4 10.2  84.7 86.4 84.8 86.2 

Average 5.0 3.8 5.3 5.2  13.4 9.5 11.7 15.4  72.7 71.4 69.1 74.9 
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Figure 1. The flow chart of the M-TEA approach. The part in red indicates the air 

quality data and emission input. The part in green stands for the key process for 

predicting PPM/SPM based on the routine PM2.5 observation. In this part, S.T. means 

the significant test. The significant level α is set to 0.05. The part in orange indicates 

the final output. 
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Figure 2. The geographical locations for the observational data used in this study. (a) 

Geographical locations of 31 populous cities (red circles) and 19 regional background 

cities (blue triangles) of China in this study. (b) Spatial distribution of the IMPROVE 

aerosol monitoring network (pink pentagrams) in the United States.  
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Figure 3. The scatter evaluation between the monthly mean of observed PM versus 

that of estimated PM in Beijing (a-b) and Shanghai (c-d), China. Panel (a, d), (b, e) 

denotes PPM and SPM. The red numbers in each panel indicate the Pearson 

correlation coefficient (r), the slope (s) and the intercept of fitting line (d). The fitting 

lines in red were based on the Reduced Major Axis (RMA) regression. The black 

dotted line in each panel from left to right represents 2:1, 1:1 and 1:2 ratio 

respectively. 
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Figure 4. The scatter evaluation between the monthly mean of observed PPM(a-

c)/SPM(d-f) versus that of estimated PPM/SPM in the United States. Panel (a, d), (b, e) 

and (c, f) denotes temporal, spatial and spatio-temporal mixed validation respectively. 

The red numbers in each panel indicate the Pearson correlation coefficient (r), the 

slope (s) and the intercept of fitting line (d). The fitting lines in red were based on the 

RMA regression. The black dotted line in each panel from left to right represents 2:1, 

1:1 and 1:2 ratio respectively. 
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Figure 5. Spatial distributions of PPM (a, b), SPM (c, d) and total PM2.5 concentration 

(e, f) averaged for the studying period. The secondary proportions of PM2.5 

(SPM/total PM2.5) are also shown in (e, f). The left column (a, c, e) indicates populous 

cities. The right column (b, d, f) is for the regional background cities. The black 

dotted line in each panel shows the Qinling-Huaihe line. 
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Figure 6. Inter-annual variations of PPM concentrations (blue solid line), SPM 

concentrations (blue dotted line) and the secondary proportions of PM2.5 (red solid 

line) in populous cities (a-e) and regional background cities (f-j). MAM (a, f), JJA (b, 

g), SON (c, h) and DJF (d, i) denotes spring, summer, fall and winter respectively. 

The absolute decreases in PPM/SPM concentration are labeled in blue/red near the 

panel (e, j). 
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Figure 7. The monthly time series variation of PM in Beijing (a-b) and Shanghai (c-

d). Panel (a, d), (b, e) denotes PPM, SPM respectively. In each panel, in-situ 

observation and MTEA estimation is shown in blue and red dots. Meanwhile, bule 

and red dotted line stands for the long-term trend in concentration changes. The 

values of the decrease rates in PPM and SPM concentrations as well as the relative 

changes in the secondary proportions of PM2.5 (SPM %) are also provided at the upper 

right corner of each panel.  
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Figure 8. The application of M-TEA in estimating PPM/SPM during the COVID-19 

lockdown. Panel a and b denotes the spatial distribution of PM2.5 mass concentration 

before the national lockdown (01~23 Jan 2020, pre-lockdown) and during the national 

lockdown (23-Jan ~ 17-Feb 2020, post-lockdown). And panel c indicates the relative 

change between panel a and panel b, i.e. (post-lockdown – pre-lockdown)/pre-

lockdown. Panel (d-f) is the same as panel (a-c), but for the secondary proportions of 

PM2.5. 
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Figure 9. Scatter plot about the correlation between daily PM concentration and MDA8 O3 

concentration in Beijing (blue) and Shanghai (red). Based on the reanalysis dataset ERA5 

from ECMWF, those days when precipitation took place were removed. Panel a-c indicates 

PPM, SPM and total PM2.5 respectively. In each panel, solid-colored lines represent the fitting 

line based on Least Squares method. The Peason correlation coefficient (r) are also given at 

the bottom right of the panels. 
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